16. In the figure below $A B C$ is an equilateral triangle. $A H$ is perpendicular to $B C$ and has a length of $2 \sqrt{ } 3$ inches. What is the area, in square inches, of triangle $\triangle \mathrm{ABC}$.

Although the area formula for a triangle is very straightforward $A=b h / 2$, finding the base of this triangle requires a little work. We might assume that since the given altitude $A H$ bisects angle A and therefore bisects base $B C$, that $C H$ is $1 / 2$ of $A H$, but that's not true:

In the figure below $A B C$ is an equilateral triangle. $A H$ is perpendicular to $B C$ and has a length of $2 \sqrt{3}$ inches. What is the area, in square inches, of triangle $\triangle A B C$.

Not $1 / 2$ of AH

One way to solve it is to use Trigonometry. Since $A B C$ is an equilateral triangle, angles A, B, and C are all 60 degrees. Therefore the Sine value for 60 degrees is $\frac{\sqrt{3}}{2}$ and the Cosine value is $\frac{1}{2}$. You should know (have memorized) this from your study of the Unit Circle.

Adjacent relative to C

We are given AH , which is the Opposite side relative to angle C in the 'right hand' triangle AHC. We want to know the base of this triangle HC, which is the Adjacent side relative to angle C in AHC.

Since we are given the Opposite side as $2 \sqrt{3}$ and know angle C is 60 degrees, we can find the Adjacent side using Tangent.

$$
\tan 60=\frac{2 \sqrt{3}}{x}
$$

Multiply both sides by x and then divide by $\operatorname{Tan}(60)$ to get:

$$
x=\frac{2 \sqrt{3}}{\tan 60}
$$

If you do not have a calculator on this particular section, you're going to have to solve Tan(60) by knowing that Tan $60=\frac{\sin 60}{\cos 60}$ and knowing that $\sin 60=\frac{\sqrt{3}}{2}$ and $\cos 60=\frac{1}{2}$.

Then,

$$
\tan 60=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\frac{\sqrt{3}}{2} * \frac{2}{1}=\sqrt{3}
$$

Therefore

$$
x=\frac{2 \sqrt{3}}{\sqrt{3}}=2
$$

CH is 2, therefore BC is 4
Finally, area of $A B C=$

$$
\text { Area }_{A B C}=\frac{b h}{2}=\frac{2 \sqrt{3} * 4}{2}=4 \sqrt{3}, \text { which is answer } C
$$

