Answer 42

42. For what negative value of k, the system of equations below has no solutions?

$$
\begin{aligned}
& 2 x+k y=5 \\
& k x+(k+4) y=7
\end{aligned}
$$

A) -2
B) -5
C) -4
D) -7
E) -1

One way to solve this is to realize that if a system of equations has no solutions, the lines must be parallel and have different y intercepts. So, the equations can be manipulated into slope-intercept form:

$$
2 x+k y=5 \quad k y=-2 x+5 \quad y=\frac{-2}{k} x+\frac{5}{k}
$$

And

$$
k x+(k+4) y=7 \quad(k+4) y=-k x+7 \quad y=\frac{-k}{(k+4)} x+\frac{7}{(k+4)}
$$

At this point, it seems very likely that the y intercepts of those two equations are different, so now we just need to make sure the slopes are the same to force the lines to be parallel.

$$
\begin{gathered}
\frac{-2}{k}=\frac{-k}{(k+4)} \\
-2(k+4)=-k^{2} \\
-2 k-8=-k^{2}
\end{gathered}
$$

Simplify as a quadratic:

$$
k^{2}-2 k-8=0
$$

This factors into

$$
(k-4)(k+2)
$$

So, there are two roots, $\mathrm{k}=4$ and $\mathrm{k}=-2$. The question asks for a negative value of k , so the answer is A .

