Answer 56

56. In the figure below $A B C$ is a right triangle. $A B D E$ is a square of area 200 square inches and $B C G F$ is a square of 100 square inches. What is the length, in inches, of $\overline{A C}$?

www.analyzemath.com
A) $10 \sqrt{ } 3$
B) $10 \sqrt{ } 2$
C) 300
D) 10
E) 15

Since ABDE is a square and has an area of $200 \mathrm{in}^{2}$, the length of one side (AB) is:

$$
A B^{2}=200 A B=\sqrt{200} A B=\sqrt{100 * 2} A B=10 \sqrt{2}
$$

Similarly, BCGF is a square with an area of 100 , so side $B C$ is going to be 10 .
Then, use the Pythagorean Theorem to solve for AC:

$$
\begin{gathered}
A C^{2}=(10 \sqrt{2})^{2}+10^{2} \\
A C^{2}=100 * 2+100 \quad A C^{2}=200+100 A C^{2}=300 \\
A C=\sqrt{300} \quad \mathrm{AC}=\sqrt{100 * 3} \quad A C=10 \sqrt{3}, \text { so Answer A. }
\end{gathered}
$$

